学术论文网

  • 当前位置:主页 > 行业论文 > 科技论文 > 正文>AI辅助检测脑动脉瘤 华为云联合论文登上放射学顶级期刊

    AI辅助检测脑动脉瘤 华为云联合论文登上放射学顶级期刊

    发布日期:2020-11-10 15:55 科技论文

      日前,放射学领域国际顶级期刊Radiology(《放射学》)发表了华为云EI创新孵化Lab、华中科技大学电信学院、华中科技大学同济医学院附属协和医院放射科联合最新研究成果:AI算法检测动脉瘤灵敏度高达97.5%,帮助医生临床诊断灵敏度提升约10个百分点,漏诊率降低5个百分点。

      脑动脉瘤是大脑中血管的弱化区域,位居脑血管疾病病因中的Top3位置,存在渗漏或破裂风险,有时甚至会致命。动脉瘤破裂的风险取决于动脉瘤的大小、形状和位置,因此脑动脉瘤的检测和特征提取是指导治疗的关键。

      CT血管造影成像(CTA)是目前评估颅内动脉瘤的主要影像学检查手段,但是由于脑动脉瘤体积小和颅内血管的复杂性,即使专业的放射学专家进行诊断也需要耗费很长的时间,一些小动脉瘤还可能被遗漏。

      华为云EI创新孵化Lab联合华中科技大学电信学院、华中科技大学同济医学院附属协和医院(武汉协和医院)放射科运用一站式AI开发平台ModelArts开发了一套基于CTA影像的全自动化、高度敏感的脑动脉瘤检测算法。算法输出会给出动脉瘤存在概率、动脉瘤位置以及直径大小等信息,并在CTA原始图像上勾画出可疑的动脉瘤。

      华为云联合团队基于一站式AI开发平台ModelArts训练模型,并用534张CT血管造影数据集测试,其中包括649个动脉瘤。

      从数据来看,该算法检测出了649个脑动脉瘤中的633个,灵敏度达97.5%。研究还发现了在最初的临床评估中被忽略的8个新动脉瘤,这8个动脉瘤有6个直径小于3mm,2个在3-5mm之间,说明算法对于微小动脉瘤也具有非常好的性能。

      参与该联合项目的武汉协和医院放射科专家龙茜博士表示:“深度学习算法在检测动脉瘤方面表现出了出色的性能。我们发现在最初的临床诊断报告中被忽略的极少数动脉瘤,被深度学习算法成功地识别出来了。”

      同时,在另外一个400例的外部数据集验证结果显示,在有算法协助的情形下,放射科医生在诊断效率和诊断准确率方面的表现都有提升,特别是对那些经验较少的医生进步最明显。有AI辅助的情况下,放射科医生脑动脉瘤临床诊断灵敏度提升约10个百分点,漏诊率降低5个百分点。

      近年来,华为云EI创新孵化Lab重点投入聚焦解决医疗领域的重大技术难题,相关论文被医疗顶会顶刊收录,在多个权威挑战赛事上如LUNA-2016、HC-2018、ISLES-2018 、MICCAI2019、MICCAI2020等获得业界领先水平,研究成果涉及宫颈癌筛查、脑中风分割、心室分割、平片诊断报告自动生成、新冠肺炎筛查、动脉瘤检测等领域。


    网友转发请注明出处转载请保留链接:AI辅助检测脑动脉瘤 华为云联合论文登上放射学顶级期刊本文链接http://www.yule868.com/a/kejilunwen/18035.html,谢谢合作!868学术论文网


    上一篇:2021年中央遴选考试策论文写作:让新兴科技创新城市治理的助推器   下一篇:科技论文在线发表推行“后评审”规避学术不端


    论主学术论文网 学术论文网专业指导写论文的要点和技巧,指导如何写论文,本科毕业论文,写作大学毕业论文,专为工程类,医学类,教育类,经理类,管理类,会计类,艺术类等原创毕业论文如何写,值得信赖值得靠谱的毕业论文写作网站.
  • 文章总数
  • 2321231访问次数
  • 建站天数
  • XML地图 XML_1地图 备案蜀ICP备16030853号